Preparation of Polyaniline Emeraldine Salt for Conducting-Polymer-Activated Counter Electrode in Dye Sensitized Solar Cell (DSSC) using Rapid-Mixing Polymerization at Various Temperature
نویسندگان
چکیده
منابع مشابه
Counter Electrode for Dye-sensitized Solar Cells
Improved Photocurrent of a Poly (3,4-ethylenedioxythiophene)-ClO4 /TiO2 Thin Filmmodifi ed Counter Electrode for Dye-sensitized Solar Cells Sho Sakurai, Yuka Kawamata, Masashi Takahashi and Koichi Kobayashi 2* 1 Department of Chemistry and Energy Engineering, Tokyo City University, Tokyo 158-8557, JAPAN 2 Research Center for Energy and Environmental Science, Advance Research Laboratory, Tokyo C...
متن کاملHigh-Performance Dye-Sensitized Solar Cells with Conducting Polymer/ Carbon Nanotube Composites as counter electrode
متن کامل
Fabrication of Novel High Potential Chromium-Doped TiO2 Nanoparticulate Electrode-based Dye-Sensitized Solar Cell (DSSC)
In the current study, pure TiO2 and Cr-doped TiO2 (Cr@TiO2) nanoparticles were synthesized via sol-gel method and the resulting materials were applied to prepare the porous TiO2 electrodes for dye-sensitized solar cells (DSSCs). It is hypothesized that the advantages of the doping of the metal ions into TiO2 lattice are the temporary rapping of the photogenerated electron-hole (charge carriers)...
متن کاملRecent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells
Dye-sensitized solar cells present promising low-cost alternatives to the conventional Silicon (Si)-based solar cells. The counter electrode generally consists of Pt deposited onto FTO plate. Since Pt is rare and expensive metal, nanostructured carbonaceous materials have been widely investigated as a promising alternative to replace it. Carbon nanotubes have shown significant properties such...
متن کاملfabrication of novel high potential chromium-doped tio2 nanoparticulate electrode-based dye-sensitized solar cell (dssc)
in the current study, pure tio2 and cr-doped tio2 (cr@tio2) nanoparticles were synthesized via sol-gel method and the resulting materials were applied to prepare the porous tio2 electrodes for dye-sensitized solar cells (dsscs). it is hypothesized that the advantages of the doping of the metal ions into tio2 lattice are the temporary rapping of the photogenerated electron-hole (charge carriers)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of Chemical Reaction Engineering & Catalysis
سال: 2019
ISSN: 1978-2993
DOI: 10.9767/bcrec.14.3.3854.521-528